-A184 825 TERM I10: AN RDA (TRADE NAME) TERMINAL INTERFRCE PACKAGE 1/1
¢1)] ggVRL POSTGRADUATE SCHOOL MONTEREY CA A J KEOUGH

UNCLARSSIFIED

=2 flz2

2
m ==
2

o

K
;‘ U .
‘lgrl‘
BN I
.
‘ J
e
Q'Q‘u
P
e
] (1 L3
o l‘t

L&

s s we

FEFEEER

—
.
—
£r
F

Fr

I

N

:: MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU 0OF STANDARDS-1963-A

"‘0 t‘%"‘h‘.‘t‘j’ "‘::’ :v oy " ‘0".\.. "'n': \': ;': 0! "‘t .‘.'\ 'a‘ .:':t‘e'\';"' :'::‘:" Ry . ; 0 "-.
'o,.. .r"'

O l .. l X l‘g I'. l
4 l’ ey l' ::' A ‘0 AL,

X ,qh . 'o
l,.“.. e o‘, \‘.h‘,‘o‘. t‘. 4@.‘4‘.&..}«.) .!o., .
4 - ‘
;, LGl X [

I l.g

" ..

DT FILE copy o @
NAVAL POSTGRADUATE SCGHOOL

.8 Monterey, California
¢

' 00 DTIC
|<: ELECTE
I SEP 0 2 1987
-, o9

| THESIS

TERM IO:
Al ADA® TERMINAL INTERFACE PACKAGE

by
Anthony James Keough

June 1987

Thesis Advisor: Daniel L. Davis

Approved for vublic release; distribution is unlimited
Ada i3 2 registered trademark of the U.S. Government (AJTD)

UNCLASSIFIED ’ v
SECURITY CLASSFICATION OF THi§ PAGE -

REPORT DOCUMENTATION PAGE

‘b RESTRICTIVE MARKINGS

ta REPORT SECURITY CLASSIFICATION
Unclassified
2a SECURITY CLASSIFICATION AUTHORITY

3 OISTRIBUTION/AVAILABILITY OF REPORT

i\ for onrlic releqne;
2b OECLASSIFICATION / DOWNGRADING SCHEDULE g_)pr’ox.red . v ! },' . L, w2
Distribution is "nlimis

3 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

.. (If applicabie) .
aval FPostgraduate Schoo Code Naval Postgraduate Schnol

6a NaME OF PERFORMING ORGANIZATION

6¢ ADDRESS (City. State. and 2!P Code) b ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 233943-5700

8a NAME OF FUNDING/ SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENT FICATION NUMSER

JRGANIZATION (If applicable)

10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK JNIT
ELEMENT NO NO NO ACCESS:ON NO

8¢ ADORESS (City, State, and 2IP Code)

vYOT TR tinclude Setunry Classification)

TERM I0: AN ADA TERMINAL INTERFACE PACKAGE (u)

PRUEH

oOPERSONAL AUTHORG) Koough, Anthony James

33 “vPg OF REPORT 13b T'ME COVERED 14 DATE OF REPORT (Year, Month Day} |15 PAGE (OUNT
Master's Thesis FROM o) 1987 June 73

6 SUFPLENENTARY NOTATION

7 COSAT: CODES 18 SUBJECT TERMS (Continue on reverse «f necessary and dentify by biock number)

Terminal Interface; ANSI Standard Terminal;
Screen Control Functionsj; Ada

e GROUP SUB-GROUP

‘3 ABSTRA(T (Continue on reverse if necessary and identify by block number)
One Jifficulty in the use of the Ada language in interactive program-
~in~ iz tne inability to specify serial CRT terminal screen functions when
This thesis presents a solution in the forn

ritin,s the user interface.
>f 2n Ada package for terminal IO that provides the vrozrammer with Ada
larn-uzre function calls that perform many of the serial CRT screen control
fin25ions automatically available in other languases. A ooecification of
e rackase TERM IO is presented. An implementation of the packare for
ti2 [T=177 terminal and an examnle of the use of TERM IO are nresontad.

Y TSR IUTONCAVAILABILITY OF ABSTRACT 2% ABSTRACT SECURITY CLASSIFICATION
Y. ~coassie e0uNLMiten [Same As apt O oTic LSERS Unclassified

<la “AME OF nssvom BLE NDIVIOUAL - . 2? réu%noyeamude Ares Code) [22¢ (owu $YMBO.
Traf. Zanie L. -avins 4r-3 S

DD FORM 1‘73, 84 MAR 8) APR edit:0on may be used until exhausted SECURITY CLASSIFICATION OF “~S PAGE

AT TRT

All other ed:t.ons are obiclete UiCLASS IS0,
e [STC RN e

Approved for public release; distribution is unlimited.

TERM 1I0:
An Ada Terminal Interface Package

by

Anthony James Keough
Lieutenant, United States Navy
B.S.M.E., University of Wisconsin, 1981

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the
NAVAL POSTGRADUATE SCHOOL
June 1987
Author: V/(,(-Z/L) Lo s / Aot “5 4

Anthény.4. Keough

Approved by: W/ 8—&014_/

Daniel L. Davis, Thesis Advisor

72 (AT Ll

Michael J. Zyda,‘cho d

K/%//

Vincent Y. Jim, Chairman,
Department 4f Computer Science

en LY. me

Kneale T. Marshalls
Dean of Information and Policy Sciences

- ABSTRACT
A ‘..

3 ~

9{:.; One difficulty in the use of the Ada language in interactive programming is
the inability to specify serial CRT terminal screen functions when writing the user
W interface. This thesis presents a solution in the form of an Ada package for
R terminal IO that provides the programmer with Ada language function calls that
perform many of the serial CRT screen control functions automatically available
.s in other languages. A specification of the package TERM IO is presented. An

implementation of the package for the VT-100 terminal and an example of the
P e’

S : r‘-,w,- ' Iy N ‘
- use of TERM IO are presented. S , Yoo
4 .

. }
-y . i . ' \ -

-t »
T
. -+ o

- C

L .

g

'|' Accesion For

3% NTIS CRA&I

N OTIC TAB 0

) Unannou-ced 8]

¢\ Justheaton]

i o

A% ,

wen :D%:'t wntion]

p»’ - — e e e SO |
QUAL\Tl Aviactdy Cvaes

o INSPECTED S
&, 2 dAVAd Lot or
Dist 1oL
h NSO M
'
>

)

: N . I N N I S N
) el N v . o Y L ¥ Ci, \".&',.' CALA & [< .
B AR e R R R e n'.‘.?’) BN '.u!h‘"fa, PR EORE S LU ey

. ot 1
A_.’.g’ \»,‘-»1. 8,

RO T

. TABLE OF CONTENTS

::0 2. Lack of Portability

B. ORGANIZATION ...ttt e e, 9
% II. THE USER INTERFACE ... e, 11
A. INTRODUCTION ...ooiiiiiiiiiiiieneietttee et 11
KXy B. TYPES OF TERMINALS ... e, 11
1. Teletype Terminalccoovviiiiiiiiiiniiii e, 11
l 2. Serial CRT
X 3. Character Memory Mapped CRT 13
4. Bit Memory Mapped CRTcooeeiiiiiiiiiiee e, 13
a C. TYPES OF INTERFACEScovuuummmummmienesmnsmsssmnenmsssmmssenennenn 14
1. Hierarchical Interfacecccooeiiciiiininiiiiiin e, 14
b)‘ 2. Event Driven Interfacecccocviiiiiiiiiiiiiniiiiicen, 14

e III. THE ADA USER INTERFACEccoooovoiniriinnnccccc, 16
V'L

aly A. THE ADA LANGUAGE ..o 19

3
3 » e RS

i s .11 Q;} s, * . N - -,- - .j‘“‘F“ .““
4 »t._,!’.‘L X ROt C A A A N N A MRS A K M A .‘,lxz!;.z B U 'o’q‘i'- o A A A AN

;: B. OTHER LANGUAGE SYSTEMS ... 20
‘ C. TERMINAL DOCUMENTATION ..., 21
: V. DESIGN ISSUES ... ot e e eeseeeeeannanas 23
: N0} 2 v (x-S 23
: B. THE DESIGN ..ottt ettt ee e 25
) 1. Cursor Controlooiieiiiiiiiiiiiiiieineciiee e, 26
l 2. Screen and Line Clearingcc.cooeevviiiiiviiiiiie i eeiceeneeeeaes 27
: 3. Keyboard Pollingccoeevveimimeiiiiiicreneeeereiiice e, 27
: 4. Reverse Video and Boldfaceccccceiiiieiiiiiiiiniiinniicnin, 28
; 5. GraphiCs ..oooeeiiiiieiici e e e e 28
: VI IMPLEMENTATION ..ottt e ee e 30
- A. THE TERM IO PACKAGE ..o 30
t 1. Control €Codescoovvuviveiuniiiiiiieieiee i 30
' 2. Keyboard INputocoooeieiiiiiiiiiiiiec e 31
B. TERMINALS ... e 33
' 1. The ANSI Terminal Interfaceccovvvviiiiiiiniiiiiieinnnnnn, 33
i 2. The VT-52 Interfaceoooeuumiiiciiiiienieiiriiiiie e, 34
’ 3. Other Terminal Typesc.cooumiiiiiiiiieiii e 35
VII. CONCLUSIONS oottt 36
z A REVIEW e 36
i 5
7

X

e " D K ' " il [- ." ‘ ‘ . Y, o~ J . ’ ‘ i ('K
TR o v T TR !&:’m‘ﬁ» RIS

) D OO MW BRIOIOMOVG ; W VO ¥ M)
At T At e b et et "a“',g’éf.z‘ﬂ;‘!.g"-s

s,

& B. RECOMMENDATIONS ..., 37

APPENDIX A TERM IO PACKAGE DECLARATION 39

N APPENDIX B A PROGRAMMER’S GUIDE TO THE
) TERM I0 PACKAGEc.ccoccoomniniiiiincn, 43

APPENDIX C TERM IO PACKAGE BODY ... 51

APPENDIX D ANSI STANDARD AND VT-52 TERMINAL
CONTROL CODE SEQUENCEScccccceeveninnnnn. 63

e e o €
I
L L e L e

APPENDIX E MODIFICATIONS TO THE ADAMEASURE
USER INTERFACEooiiiiiiiieeeeececee e 64

FIR X
SIS .4"

-
. .—A.‘

LIST OF REFERENCES ..., 70

-

INITIAL DISTRIBUTION LISTcccoiiiiiiiiiiiiiiiieiiieine e, 71

)
A

.
M 3¢ g
s AT YR A'r,‘t ol ' 0! c‘ o’. (ENR e '\"' 0 XA o'. W, s’:!i % t‘, R LU TN b, DN bl R '.'l' B

LS 'l‘

" o]
R
4
)
l‘,',
“;-‘:T"
k3
. I. INTRODUCTION
Ay
B
' A. BACKGROUND

) The ability to understand and use a computer software product depends
[75)
A’ j heavily on the quality of the user interface. The user interface is the vehicle of
3
3. conversation between the programmer and the user. The programmer wants to
Pt }

. provide a clear. easy to use interface so that his work is favorably evaluated and
A

e

; used. The user wants an interface that he can understand and use easily.
Y

»,
t

a Programmers employ a variety of techniques in the design of the user interface.
- The techniques used depend greatly on the type of hardware on which the the

-~ q

>

< -

vl program runs and the capability of the language used by the programmer. Many
b}

languages provide a wide variety of functions that control the terminal interaction ‘

ﬁ
P rocess while other languages are sparsely equipped. Often the amount of effort
i P ¥ equipp |
4 |
'S

o

"" that is required of the programmer determines the quality of the user interface
"

“:: that he produces.

Ay . .

b Thesis students at the Naval Postgraduate School (NPS), who are sponsored
‘A.-'..’

e by the Naval Weapons Center. China Lake (NWC) and who are programming in
2

LY

é: Ada have experienced difficulties in controlling the output to a serial CRT
bs

b terminal screen in the Ada language. These problems are manifested in the areas
:J . of cumbersome user interface modules and non-portable interface modules. These
s

; 4

W 7

4

™

N

problem areas at first seem to be separate but both are svmptoms of the lack of
terminal interface capability in the Ada language.

1. User Interface Modules

The user interface of the Ada programs being developed today at the
Naval Postgraduate School are cumbersome. hard to use, and do not fully utilize
the capabilities of the user’s terminal. Programs such as AdaMeasure [Ref. 1]
were written using the standard Ada packages text io and serial io which were
designed to be used on teletype terminals. The program is usually run from a
VT-100 terminal with much more capability. The user is not able to use the
capabilities of his equipment to operate the program as easily.

2. Lack of Portability

Programmers who try to use the capability of the terminal to improve
their program’s interface often sacrifice portability. The AdaMeasure program
discussed above uses a single VT-100 control sequence to clear the terminal
screen, making the program non-portable. A programmer wishing to adapt the
program to a different terminal type is required to research the method of clearing
the screen and adapt the control sequence in the program.

This thesis examines some of the problems of writing a good interface in

o\ Ada and proposes a solution by providing a package of interface procedures. The
] programmer can use this package to better exploit the capabilities of the serial
> . ‘ : :

: CRT terminal and enhance the quality of the user interface that he designs.

\

<

) 8

’

L d

"

W

’

b, "~
-

AT .!’l,“

3

B. ORGANIZATION

Chapter Two describes the styles of user interfaces that are used today. The
effect of the hardware capabilities on the choice of the user interface style is
discussed.

Chapter Three discusses the design of the Ada language and the reasons for
the lack of user interface procedures. The experiences of students programming in
Ada and the need for a more sophisticated interface package is presented.

Chapter Four discusses the capabilities available in the common terminal
tvpes and how other popular languages have used the capabilities of the serial
CRT terminal. An examination of these features helps to determine what
procedures might be useful in an Ada interface package.

Chapter Five discusses the issues considered in the design of an improved
interface package. The design of the TERM IO interface package is presented
and its capabilities discussed.

Chapter Six discusses the implementation of the user interface package body.
An application of the package of interface procedures is demonstrated using a
sample menu producing procedure.

Chapter Seven presents a summary of the work discussed and
recommendations for the use of the TERM 10 package and for future work in
this area.

Appendix A lists the complete specification of the package TERM IO.

Appendix B contains a programmers guide to the use of the TERM IO package.

9

.“}5 "_'..

R

AT I PN Tt T OR TEN TN Y -

Appendix C lists the package body of the TERM IO package for the VT - 100
terminal. Appendix D presents a summary of serial CRT control codes for several
terminal types. Appendix E gives examples of the use of the TERM IO package
to improve the interface of an existing Ada program, the AdaMeasure program

written by thesis students at the Naval Postgraduate School.

10

- - . - . . - . . - - - - - - - . . - - Te T L S I Te T - hrY
R I o T T N S e S e e e e e]
SO NIR A ANTINT AT ISP IS0 N o et VT S bV W Rt o n gty T VRS A,

¥

=2

R WA
oV * Y a

- -

Etnr NN |

-
2
)

{

II. THE USER INTERFACE

A. INTRODUCTION

The purpose of the user interface is to bridge the conceptual gap between the
user’'s understanding of the computing process and the program in execution. The
user is not concerned with the hardware implementation details. only with the
functional process of the program that is running.

The capability and functions of the user interface vary greatly from program
to program. Some variation in capability is due to the decisions of the software
designers. Many differences, however, are due to the constraints imposed by the

capabilities of the supporting terminal.

B. TYPES OF TERMINALS
Terminal hardware configurations are different for every system. The
capabilities of the terminal depend on the level of sophistication of its hardware.
hese capabilities vary from the basics of a teletype printer to the latest design of
graphics terminal. The common terminal types in use today are the teletype.
serial CRT. character mapped CRT. and the bit mapped CRT.

1. Teletype Terminal

The teletype terminal is the first widely used terminal. Many are still in

use today. In this terminal the computer output is sent one character at a time in

11

B
0N
K> serial fashion from the computer to be printed on the paper of a printer which sits
S
My behind a keyboard. The input is taken from the keyboard and is usually echoed
AT .
e on the paper. The user may address the memory by line only. The teletype has 1
o
¥ “qe .
e:' the least capability of any terminal type.)
.'
W
. 2. Serial CRT
: 3
:' The serial CRT terminal is an improved version of the teletype terminal.
KL
o . . .
R The paper and printer have been replaced in this system by a CRT screen that
.8
&Y displays the output printed by the computer. This terminal has several
D
i)
W advantages over the teletype including speed and paper saving. The only
i
a capability that the serial CRT terminal adds is that it is cursor addressable. The
u"lz
< computer can position the cursor to any position on the CRT screen to print the
RS
- \ ‘
N next character. This feature can be used to format the screen output and produce
129 simple shapes and graphs. The serial CRT is probably the most common 1
A terminal in use today. The input device has not changed from the teletype. it is
b
“.) still the keyboard input.
1)
:: The terminal controls what is displayed on the CRT screen by storing the
L]
]
Of) screen contents in an array corresponding to the screen locations on the screen. A
AR common size for this array is 24 rows by 80 columns. Each location holds
X
’_:‘1. information that indicates the cliaracter to be displaved at its screen position.
s
o Also stored is information such as highlighting and character and background
,. L] |
'- shade. Input to the terminal is received just as in the teletype terminal. The
Ay . . !
ot stream of serial output from the computer is written to the screen buffer. The
12 |
‘
‘nd) |
1N }
o |
A%
;::‘ 3 0 T N Y s e b T e S TR e M Oy T T AT N T R L Ty Py Py Wby
/|!~ilYa, e“‘n q.'o"a 8. e 3§70, W (X ¥ X * ‘\" ‘_‘ ,,‘-,‘s,‘ .‘lv'—..P-.r"% ,‘ 5 o { X

PR TR T W e

video processor reads the screen buffer and uses a character generator to produce

the characters on the screen. The video processor typically does this 30 times each

o second. In the serial CRT the screen buffer is not accessable to the program.
N

g

k] 3. Character Memory Mapped CRT

€

LA

In the character memory mapped CRT terminal. the method of storing

: the information to be displayed on the screen has changed to provide access to the
"
i) character stored at each screen location. The output is the same as for the serial
" CRT. The contents of the memory storage locations in the screen buffer can be
- read and used by the program. The video processor works the same as for the
>
b |
N serial CRT.
I
o 1. Bit Memory Mapped CRT
K

:: In the bit memory mapped CRT terminal the screen buffer has been
I expanded to use a memory location for each pixel location on the screen. A
1

3 tyvpical screen size 1024 by 768 pixels. This terminal is pixel addressable. This
b

allows the drawing of more complex graphics than is possible with character based

. systems. In this terminal. the video processor reads the memory location
(% >
o
. corresponding to each pixel to determine the shade. The character generator is no
N longer used in the screen refresh cycle. Pointing devices such as a mouse or track
N

- . . .

“~ ball are now included as input devices as well.

s
=
r.)

o
7
i
i
R 13

4

Al

L]

WY

o

. o - - A L. o~ PR R N T Y R R N A A '1-4'-' A -‘.‘-\- -
a8 o S-" . '\.-_".‘- s T O LSRN w AN el it S R T R N
O gt 2R Ayt m@:b.mm&&mm@m‘w : »

.
-~

o
”~

’: C. TYPES OF INTERFACES

2

‘ . .« . .

K General purpose interfaces today are divided into two main categories.

3 hierarchical interfaces and event driven interfaces. '

-~

1. Hierarchical Interface

B

The hierarchica: interface is commonly used with the teletype, serial CRT

a

]

& and character mapped CRT terminals. Systems designed using the hierarchical
1]

)

) . . v . .

X interface are usually menu driven. Using this type of system. the user makes a
N selection from each of a series of menus until reaching a functional level where a
A

: process is performed. After the process is completed, control of the program is be
&

Y

- returned to the top or ‘'main’ menu or to the last menu reached before the process
o

2 execution began.

.

vd The hierarchy of the menu selections reflects the structure of the
(N . . .

% program. At each menu level. the user restricts his view of the program to the
5

Yy options left under that selection. If. after a process is performed, the user desires
%

-~ to run another process. the user must retrace the menu tree to reach the menu
K

*
q selection for the new process. A user can experience problems in working through
I

f: several menu levels and remembering what options are available from any of the
1
o menu levels,
hi 2. Event Driven Interface
i:\ '

)

- Event driven systems usually use the bit mapped CRT terminal with a
-, pointing device. The user can access most of the program functions directly from
'l

-,

W the terminal screen.
. 14

L Nl

L]
)
i)

.

L ¢

R
B~ 7o 4 e T
“'.!?“'!& (R] "u".’n

R N e TR R T)

e e
W & ¥ 4 &
) Bt 23

= NI - LT \ -. " X " j,.y))
oo AT O QTN AL KM, (XN 4 8 SR AN CR S BOBCASIAND AL ,,0',.,:,.9!..08: N

kit

¢
> Functions are selected with the pointing device from menus that are
S
)

always visible to the user. From almost every function., the user returns to the

\ main screen. The prompt for the available functions is visible at all times so the
"-:

v user has less difficulty remembering what functions are available and how to
b

‘ access them.

T,

f{ This thesis concentrates on the user interface requirements of the
&

hierarchical interfaces using serial CRT terminals. The systems currently
" available at NPS and NWC for Ada programming are all serial CRT devices.
)

Almost all of them are VT-100"s or VT-100 emulators.

Yo Yo o

L85

15

P e X
- - e
B

;‘0.

N‘&wz'ﬂ O ‘L' ;&- pﬁi}i{:ﬁm ;. "

IIl. THE ADA USER INTERFACE

The Ada language is designed for use in embedded systems software.
Interfaces for embedded systems tend to be specialized and hardware specific.
Little effort has been made to develop an interface for output devices other than
the serial (embedded) device and the teletype terminal. As a result. programmers
who want to write in Ada cannot use terminal interaction and screen formating
available on the serial CRT terminal without writing their own interface
procedures.

Most of the current Ada literature concerns the design of software engineering
environments for the language. Many of these systems are being designed and
written but none has specifically addressed the problem of using terminals with
more capability than the original teletype. It is assumed that each application will
write its own interface.

The Preliminary System Specification of the Software Technology for
Adaptable Reliable Systems - Software Engineering Environmets (STARS-SEE)
program specifies that a standard user interface at the end product level will be
used. The Interface Control Working Group (ICWG) is responsible for the
oversight and control of system and software interfaces[Ref. 2. The preliminary
specification does not address the variations of terminal types but only savs that

the interface is to be consistent.

16

The shortcomings of the TEXT IO package were the subject of a paper by
J.P. Rosen presented at the 1984 IEEE Ada Applications and Environments
Conference |[Ref. 3]. This paper describes typical programming problems with
TEXT IO. many of which are the same problems experienced by programmers at
NPS. Rosen offers several programming techniques to better use the facilities in
TEXT IO. Rosen takes the position that a special IO package is not necessary to
write a good terminal interface in Ada. He does not address the problems of using
screen graphics or different terminal configurations.

While it is likely that any large commercial application written in Ada would
include its own terminal IO package, the use of Ada in the academic and research
environments would be enhanced by the availablility of a simple, easy to use.
portable interface package that supported the serial CRT terminal.

Students at the Naval Postgraduate School are currently using Ada for
general purpose projects other than embedded systems. Many of these projects use
terminal interface and interactive procedures. These students and other
programmers who want to use Ada for programs with terminal interface
procedures face several difficult problems. Methods of performing many common
screen functions such as clearing the screen or positioning the cursor are not
entirely standardized. Students who want to improve the usability and
appearance of their work have been forced to include terminal specific character

codes and functions in their programs. The result is that each student is spending

17

L

1
i time researching the correct character codes and is producing programs that are
)
4
4

not portable.

:',: The solution for these programmers is the availability of a package of -
%

i terminal interface procedures that a programmer can use for terminal interaction.
¢ The objective of the terminal interface package is to provide the Ada programmer
)

b

! with the enhanced terminal interface functions required to exploit the capabilities
R

K of the serial CRT terminal. The programmer can use these functions without
:: having to rewrite them for each program. The result will be more efficient.
!

::: standardized programs.

‘."

; The system should provide an interface between the program and the
W

b terminal device so that the programmer can specify the terminal functions by
s

b

e using standard procedure calls in his programs in the same way that text io and
X

! serial 1o procedures are called. The call will remain the same. but the
' : : . .

" implementation will depend on the terminal type.

‘.!‘

AR

L}

0y

)

&

W

f.ﬂ

&

\

*

‘

-

.)
&

2

f'

N 18

R

5

-

] “~ N NG Nt \._...\.,.\x-.;,,.-._».._._....,._..\...\ﬁ\.\.. WY
- N O S N o R R N A SN N N2 R P AR AR SR AU ST O A SR A AT 20 I A N

PP T VO Or Tar o Toe e 2 ndla ok odd b ol -rrrw'u-v-v—'-—‘-—]

IV. SURVEY OF EXISTING SYSTEMS

The Ada language, other language interfaces. and terminal manuals were
studied to determine how user communications in the Ada language could be
improved. Several existing commercial software language packages have features
that fully utilize the capabilities of the serial CRT. These languages are
implemented for the particular language on a particular mainframe or
microcomputer. They indicate what features have been successfully implemented
and what capabilities an Ada programmer is likely to utilize. Programmer’s
guides for the different terminal types indicate what functions can be
immplemented for each terminal type and the method to be used. By comparing
the functions available on the terminals. the functions provided in other systems.
and the experience of Ada programmers. a common set of useful functions that a

programmer is likely to use can be chosen.

A. THE ADA LANGUAGE

Ada is designed to allow users to tailor the language to their needs by writing
packages that can be used in many programs. The designers of the language
purposely left out many of the terminal interface functions to maintain the overall
generality of the language|Ref. 4.p.252]. Implementation of these functions has

been left up to the user.

W P T ™ O T ONT O T Y @ e LA TAETR TR TR T NIRRT TR TR TR R TR T Y OOFNTFTETERETE TR ST e N

The standard text io Ada package allows the programmer some, but not
much, control of the screen output. Some of the procedures specified include: line
and col that return the line or the column of the present cursor position. set line
and set col that change the cursor position. and a new page function that
advances the page[Ref. 5|. These procedures are designed to control the output of
the teletype terminal and do not provide the level of access to the operating
system functions that is required to control the output to a serial CRT terminal.
In order to produce the terminal screen output, the programmer must specify the
character to be printed at each screen location. In such a case, the CRT terminal

screen is no more useful than the teletype printer paper it replaced.

B. OTHER LANGUAGE SYSTEMS

Languages that are designed to run on a particular system can provide a
fairly extensive set of terminal control functions because the hardware
configuration is known and portability is not an issue. This is particularly true of
systems that run on microcomputers.

One such microcomputer language is Turbo Pascal. Turbo Pascal provides a
set of Pascal procedures that the programmer can use to control the screen
output. These procedures allow the programmer to clear a line of text. clear the
screen. position the cursor. and adjust screen brightness. Turbo Pascal uses the
ANST escape codes and operating system calls of the host machine to accomplish

these functions. [Ref. 6,

L e T T e S
AEIG S VR R AR IC SR AL X CYA GG

e NN NN
AN N
YRR

..
-
-

-
-

- ,;'.J' =
)

. . TS R N SRR R LR N IR NP BE NP O S SRR CAR T OL Y
e A o e O S S e e e m:fl*:j‘k:{k{h{&»{j:&ﬁm{ﬂ&{h{

C. TERMINAL DOCUMENTATION

Documentation such as the VT-100 User Guide is available for most terminal
types. This documentation provides the user with information about the
terminal’s capabilities and functions. The VT-100 User Guide summarizes the
protocol of over fifty terminal features [Ref. 7,p.43]. Norton's programmer’s guide
to the IBM PC is an excellent source of information for users ~{ IBM and MS-
DOS microcomputers [Ref. 8]. The challenge to the programmer is to incorporate
the terminal functions into the language that he is writing in. in this case Ada.
The difficulty to the programmer is the need to devote significant time and effort
to the ancillary problem of the user interface.

An examination of the code written by programmers for their interfaces
illustrated the problems experienced by those programmers and what they would
likely do if provided with a set of user interface procedures. Neider and Fairbanks
have written their interface on the level of the teletype terminal without making
use of the capabilities of the terminal [Ref. 1]. This is a ‘lowest common
denominator’ approach. This method is hard on the user who may be used to
working on other more advanced or friendly systems. such as Unix. Other
programmers have spent hours trying to reproduce a function that they know is
possible to do in another language. An excellent example of this is a keyboard
polling function. that is a function in Turbo Pascal [Ref. 6.p.143]. and in the "C’

language is the ‘getchar’ function. A kevboard polling function is not provided in

Ada.

21

! A common method of screen control seen in serial CRT terminals is the use of
special character codes such as the ANSI code [Ref. 7]. The put function in
s text io package is capable of writing these control codes to the terminal screen.
By using the standard functions in the text io package and the ANSI codes for
the host machine. a useful set of terminal user interface procedures can be

implemented.

sl 2

o

T Y
.

)

-
¥, - o
- » R

B i T

Py 4 4

22

- N e el s "}

AT T T Y NN N
aen i Ln N il ¥,

’\'o;l o« Wl a.! W00 '.VQ" ’.".’ .Q. n

Sk

LS L) ‘™ [
L . o 'y o \ (s
A oo R ..’-.‘,l. 3 !l.‘.

V. DESIGN ISSUES

A. OPTIONS

By looking at the existing software and discussing the needs with
programmers. the need for a basic set of terminal interface procedures has been
established. The next step is to design an implementation of these features that is
useful to the programmer and allows the programmer to write terminal interface
functions easily.

Three alternatives were considered for the implementation of the terminal
interface package. The low end alternative is to distribute a table of terminal
functions and control codes to programmers to include in their programs. This
method has several disadvantages. It requires strictly enforced programming
standards to prevent giving the programmers too much discretion over how to use
the control codes in their programs, promoting the non-portablity of code. It
would defeat the organization’s goal of portability and maintainability and send
the 'wrong signals’ to the programmers.

The middle alternative is to develop an Ada package that implements a set of

functions that are cornmon to many terminal types and restrict the programmers
to using the package to perform terminal interaction. This will allow the code
ol that is produced to be portable to any terminal tvpe that is supported by a
W version of the terminal interface package. This method achieves the most

- 23

S R G o)

portability and standardization but it does not fully utilize the capabilities of each
terminal type.

The high end alternative is to write a separate package for each terminal type
that provides a full implementation of the capabilities of that terminal. This
allows the best utilization of the terminal capabilities, but it has many of the
same disadvantages as the low end option. Code will not be as portable. There
will be no standardization, and more problems in maintenance of a larger set of
programs.

Since many of the processes to be implemented are accomplished through the
use of character sequences that vary from terminal type to terminal type. an Ada
package can be used to declare the constants for a terminal type. The same set of
procedures can be used. but with a different set of constants for each terminal
type supported. This approach allows a package to be designed for any function
that is performed by writing a special character sequence to the screen.

The choice of terminal types for implementation of the TERM IO package
was based largely on the types of terminals at the Naval Postgraduate School and
the Naval Weapons Center, China Lake. The most common terminal is the VT -
100 terminal. The VT-100. an ANSI standard terminal, is the terminal used for
current Ada projects. Most serial CRT terminals in use today can emulate the
AN~I standard terminal to some degree.

The TERM IO Package provides much more screen support than keyvboard

support. Kevboard functions are much more hardware oriented than the screen

24

»
-
-,

Do ha _ae A aan aia mod ach 8 and soh Ao bode Nak Ak dalh sabetgl g T Tew Wt W er

functions and are less likely to be portable. The interface between the program
and the screen functions is well defined by the use of character strings as terminal
commands while the interface between the program and the keyboard function is
not as well defined. The terminal screen usually accepts information in a
character format but the keyboard can send information in character. integer, or
other data format. The program must allow for different data types if keyboard
polling is implemented extensively.

The terminal assumed for the TERM 10 package provides a terminal CRT
~creen of 80 columns by 24 rows. support for the basic ASCII character set, and a
araphies character set extension that allows the graphics characters to be declared
a~ character constants in Ada. Terminal control codes are available to perform the
funenions of cursor movement. screen and line clearing, reverse video and bold
Yface printing. and graphics character printing. Other terminal features such as
n~er controlled cursor keys, numeric keypads, and special function keys are not

nsed in the TERM 10 package.

B. THE DESIGN

The package TERM 10 includes screen handling procedures that are not
available in any of the standard Ada packages. These procedures allow the
programmer to perform screen control functions in the Ada language. The
package specification has been designed to be portable among many terminal

tvpes. provided that the package body has been modified for the terminal type in

AT _- . ‘._ - -‘ RS ’-._ --_ . , -

- ~,'.'_ WA s P

‘u

« .,

{ .i-m us.m{s.g o

.,

Ty T T RIS e W e W e TR

DAAS I,

\’\'_5;{\‘:'1- ',.%:[Jn_. -i ‘_.:" Ty L nA .;A!‘.a.\.‘_. AN SN

R
.

o s s
.‘_J..‘f

"a

#

2280

2
Ry

7+

SEAAEAL- |
’r.‘%’}?‘i?

]
>

(%
a
AL

X

A

use. The complete specification of the package TERM 10 is listed in Appendix A.

Portions of the package declaration a
Appendix B provides a programmer’s guid
the use of the TERM IO package.

with TEXT IO;

use TEXT IO:

package TERM 10 is

type SWITCHTYPE is (ON,OFF);

SWITCH : SWITCHTYPE;

re reproduced and described below.

e with more discussion and examples of

The package TERM IO uses the input and output procedures contained in

the standard Ada package TEXT I0. TEXT IO should always be available in

the Ada programming environment. The
type of (ON.OFF). The variable SWITCH

printed on the screen.

type SWITCHTYPE is an enumerated

1s a status variable used by of the rext

The cursor control procedures can be used to position the cursor

: in integer):
: in integer):
: in integer):

: in integer):

.ROW : out positive count):

’_)‘ 1. Cursor Control
-
‘;i‘
::_,.:
.‘ anywhere on the terminal screen. These are:
A procedure MOVE CURSOR HOME;
o procedure MOVE_CURSOR UP(NUM
S procedure MOVE CURSOR DN(NUM
! procedure MOVE CURSOR RT(NUM
- procedure MOVE CURSOR LT(NUM
7‘-.:: . procedure SET CURSOR POS(COLM.ROW : in integer):
r?,j procedure GET CURSOR POS(COLM
o
DO
) 26
2
o
)
%
L
h
R
"' 1y ‘ -"'n"«'o‘ l‘qn‘- .03 » ' . - “1 4 .' .ﬂ.'Q. 'n“ .r:‘.‘r'"‘(‘\.r *ﬁ‘ ‘;’ J.‘).W . N

e A YA A A
A T RN TN)
, SN TR e

In a program, a procedure call of MOVE CURSOR LT(3): moves the cursor
three spaces to the left on the terminal screen.

2. Screen and Line Clearing

Procedures to clear the screen and to clear individual lines have been
included. These prccedures are called without parameters. These are:

procedure CLEAR SCREEN:

procedure CLEAR LINE;

procedure CLEAR CURSOR TO _EOL:
Procedure CLEAR LINE clears the line the cursor is on. Procedure
CLEAR CURSOR TO EOL clears the portion of the line to the right of the
cursor. Procedure CLEAR SCREEN clears the screen but does not change the
cursor position.

3. Keyboard Polling

Keyvboard polling functions are used to get a single character from the

kevboard. usually as a response from the user. These functions are called without

parameters. They are:

function GET KEY return character;
function KEYPRESSED return boolean:

The function GET KEY can be used to get a response such as a menu selection.

The function KEYPRESSED can be used to have the user signal readiness to

continue.

%2)
3
)
Tl
A%
S 4. Reverse Video and Boldface
)
O
.!I Reverse video and boldface printing can be obtained using these
’: procedures. All are called without parameters. They are: 1
Y
N procedure SET REVERSE(SWITCH : in SWITCHTYPE); ‘
procedure GET REVERSE STATUS(SWITCH : in SWITCHTYPE):
i procedure SET BOLD(SWITCH : in SWITCHTYPE);
J;_: procedure GET BOLD STATUS(SWITCH : in SWITCHTYPE);
$ The variable type SWITCHTYPE is an enumerated type of (ON,OFF). A
1?,‘
procedure call of SET REVERSE(ON): causes all printable characters printed on
l.' B
:;'qi the terminal screen to appear in reverse video until a procedure call of
hy
:::! SET REVERSE(OFF): returns the output to to the normal mode. Bold face
Al
i: print works the same way.
e - oot
o 5. Graphics 1

Simple graphics characters can be used to make a display better looking
and more understandable. Primitive characters have been provided as well as
N several procedures. These procedures are:

> procedure PUT TOP LT CORNER:
b7 procedure PUT TOP RT CORNER:
el
o,

‘o procedure PUT;BOT;LT T(IOR.\'ER:
. procedure PUT BOT RT CORNER:
vem procedure PUT HORZ BAR:
o procedure PUT VERT BAR:
::: procedure PUT CROSS:
":- procedure PUT TOP TEE:
b procedure PUT BOT TEE:
" procedure PUT LT TEE:
j,-'.:. procedure PUT RT TEE:
I procedure DRAW BOX(COLM.ROW : in integer):
procedure DRAW HORZ LINE(LENGTH : in integer):
) procedure DRAW VERT LINE(LENGTH : in integer):
"
; 28
i
)
2!
o4
B 0 B R) N R e

W W N W EW W wUSWYr w " W -~

Procedure DRAW BOX draws a box centered on the terminal screen with the
upper left corner at position (COLM.ROW). The graphics character procedures
PUT TOP LT CORNER through PUT RT TEE print a single graphics
character to the screen and leave the cursor on the position of the character just
printed. DRAW HORZ LINE and DRAW VERT LINE draw a line from the
current cursor postition of of the length specified. A horizontal line is drawn from
the cursor position to the right. A vertical line is drawn from the cursor position

up the screen.

29

F—

S e om
e e N L S e YA Y
. MQMM*.,_{A&{{.; WA

5 E N
o -

RELLS S

»

AR FAMNCHRINN

AP

VL IMPLEMENTATION

The package body of TERM 10 implements the portable TERM IO package
specification. The goal in writing the package body was to produce a package
body for one terminal type that could be easily modified for other terminals.
Terminal specific items were declared as constants or separate procedures that
could be easily modified. The complete package body for TERM IO

implemented for the V'T - 100 terminal is contained in Appendix C.

A. THE TERM IO PACKAGE

The major part of the TERM 10 package body is portable. The few parts
that are not deal with specific hardware of the terminal. These are the control
codes and the method of keyboard input modes available in the terminal.

1. Control Codes

Control Codes are character sequences that are interpreted by the

terminal as commands. These codes are used to perform terminal functions such
as clearing the screen and moving the cursor. Control codes vary from terminal
to terminal and are not compatible. There is an ANSI standard for terminal
coutrol codes. however. which many terminals are capable of emulating. The
cortrol codes for two common terminals, the ANSI standard and the VT - 52

teriiinal. are contained in Appendix D.

30

vy uy o e TN TR TR

)
I"“
«,::0
LA - . . .o .
:«::' Portabihity is achieved by restricting the programmer from direct access
s
\." .
1ty to these control codes. Instead. the codes are used by the procedures available to
W .
f_};‘.‘ : the programmer through the package declaration. The control codes for the
Kol
(a7 .
N terminal are declared at the head of the package body. These codes are declared
Y
AN
e as string constants. The string constant can be referenced by name to avoid
'\._‘
[l '
o, . .
oy problems with embedded constants. The constants were used in these procedures
’\._’
-‘
9. 3% . . ey
oh instead of the actual code strings to enhance the portability of the package body.
o, 2. Kevboard Input
f!*.h oo
e
'Y
SN When writing interactive programs. it is often required that the user
a
o <elect a menu choice or ‘press any key to continue’ reading an information screen.
e These user interactions are usually done with a 'keypress' routine that detects
2 when a key has been pressed on the kevboard. In Turbo Pascal, this function ix
. called "KevPressed'|Ref. 6. p.143". This feature allows a user to move quickly
.-\'
"‘- - . . . -
- through a hierarchy of menus with as few kevstrokes as possible. Unfortunately.
MY
¥ J
) there 1~ no keypress routine in the Ada language.
"oV
4,
~
>
24 -
'_';'\ The kevboard input functions in the standard TEXT 10 package are the
%
o ‘get” functions. These functions are used to get character. <tring. and number
. input from the user. These inputs are required by the Ada language to end 1 a
.\:;:
terminator character. an end of line. or end of file. The Ada get procedures
W

interpret the carriage return a< the end of line or ile. This means that with the

L . . ~

~tandard get procedures the user must hit a carriage return after cach menn
.

¢

‘N ~election. Since most other tmenu svstemn: do not require these carriage returns.
e 31

‘\.',-

-

o

v"{

.
-

o e

Rl . . T N Coe
DR S BTt S At R At SR
PRI Y S S :

et = .
N A L
PSR SO P ST e

the carriage return action becomes annoying to the user. This is important
enough to attempt an implementation of a keypress function for the TERM 10
package.

The method of getting input from the keyboard is different for each
implementation. Various methods of system dependent kevboard polling can be
developed. The poller could be a system call or an interupt. It could be a
pragma. a compiler interface command. to a language such as 'C’ that already ha«
a polling function. In the package TERM 10. the function KEYPOLLER is not
fullv implemented. Instead. it has been stubbed with a a simple Ada ‘get’
procedure. The package can be used in this form or the ‘get’ procedure can be
replaced with a hardware specific kevboard polling routine. Each svstem can
install their own kevboard poller routine if it 15 desired. If the KEYPOLLER
function is used with the get procedure. carriage returns are required.

The method of keyboard polling has been hidden in the private procedure
KEYPOLLER. The programmer cannot use keypoller directly. It is called from
the funcrions GET KEY and KEYPRESSED.

The procedure GET CURSOR POS is designed to read the cursor
po~ition maintained by the terminal and return the row and column to the
progratn. This funetion was not implemented due to problems involved in
translating the row and column information that is provided by the terminal into
an Ada variable. This procedure can only be mnplemented by a hardware specific

call to the ternnnal.

[X)
[&)

‘. A

R A N 0 v e N o AT
" o et X (.Mlﬂ..fnw AT PR h_‘m‘_m\‘_s T .‘)‘:@j’ \!\ l&'h.ﬁu é&. 'J\;.

L L aah aad Ao sk Ao Al aua god ol B A and A AL Al dd o oW PP oTwWUwwTE v EwTREwTRTRYTRRRE RS

" B. TERMINALS

While the package declaration of the package TERM [0 is portable. the
implementation of the package body is specific for each terminal type supported.
The specifics of the implementation are hidden from the programmer in the
package body. The programmer i~ aware of only the declaration, or calling
statement for the procedures conatained in the package body. An implementation
has been written for the Digital Equiptment Corporation VT -100 terminal. This
tvpe has been chosen because it is the most common and almost all comercial
terminals are capable of emulating 1t. Modifyving the package 1o use on another
terminal type can be done with changes to the package body. The complete
parkage body for TERM [0 implemented for the VT -100 terminal 1= contained
m Appendix €.

1. The ANSI Termunal Interface

The VT - 100 termunal uses the control sequences established by the

American National Standards Institute for controlling serial terminal <creen
ontput. These sequences all begin with the ‘escape’ character, 033H. and thus are
known as ‘escape codes.” The escape character can be written in Ada as

ANCILESC. A summary of the escape codes for the ANNI terminal are

contained in appendix D. An MS - DOSN microcomputer can use the ANSI codes 1
with the deviee driver ANSLSYN configuration.
To use the escape code sequences in Ada the codes must he declared as

string constants. These string constants can be wanipulated a~s anyv other ~trings

33

.
Tt

T R N N -y -_".._-..
 p e e
SN, T e U R R T

P Ao e o Rt e e dla i il S aed ittt —T

L)
..
»?
LIRS
g"&
4 . . . o . .
:f! are in Ada. including writing them out with a put procedure from the TEXT 10
)
Ty
L ' . . . S .
v package. When the terminal receives the output string. it interprets it as a screen
N command which is executed. The string is not printed on the screen. An example b
k)
d
w.‘
‘. . . .
o of such a ~tring declaration is
I “]
L - R . . ra e NIe v e oA
.' UPCRSR © constant string ;= (ASCILESCU U1 UCA™:
‘ﬁ
.0
W This ~tring causes the cursor to be moved up one line. The complete list of <tring
*) declaration~ for the package body of TERM 10 is contained in Appendix (.
> 2. The VT-52 Interface
N‘
+
- Another common terminal type i1x the Digital Equipment Corporation VT
.0
2. . e - .
’ - 532 termunal. The VT-32 terminal also uses control sequences to control the
.). o}
b ~creen. These sequences are in a different format and are not compatable with the
! ANSI <equences. These sequences can be written in Ada as string constants just
Y
I . e e -
A a~ the ANSI sequences can be. The package body for the VT-32 interface would
R
‘ be the same as the package body for the ANSI interface except for the different
n.'
J‘
e . . : 4 .
s declaration of the string constants. An example of a string declaration for the \'T
>
o.
" - 32 terminal is:
2
‘-‘_ . .
e T"PCRSR : constant string := (ASCILESCUAT):
2
1"
Wy
- This ~tring would cause the cursor to be moved up one line.
"“ 4
K
v . .
» A complete implementation of the package body could not be made for
K
"W i .) . ‘]
o0 the VT - 52 because the VT - 32 does 1.0t provide all of the control functions
iy 34

:“:'i: provided by the ANSI standard terminal. A partial implementation with only the
common functions of the terminals 1s possible for use on the VT - 52.

’-. : 3. Other Terminal Types

J_ The TERM IO can be adapted to other serial CRT terminal types by

substituting the correct control codes for the new terminal type. If the terminal

=~

T o T
"ol WU W AT

tyvpe uses a method other than control sequences to control screen functions. then

revision of the individual procedures of the TERM 10 package body will be
i required. This revision is likely to result in a very hardware specific package body.
N

K- It ~hould still re<ult in a package body that completely implements the TERM 10

package specification.

L .}.ﬁ}

P A4

O
LR T P

4249
N

(IR P
'..'.'q‘ W

AN . Ty Che ML 2

P P
o A A AT At o Ta e A
. A N A) . . X o X o) Al

i
TR
U
()
" !'
R
O
n‘::':
L VII. CONCLUSIONS
f '.l‘.‘
nta,
O As use of the Ada language becomes more common and more programmers
R
e are trained in its use there will be more efforts to utilize the portability and code
1pa
&
. reusability features of Ada. The TERM IO package is one example of the use of
W f these capabilities. The use of the Ada language to allow programmers to write
AN programs that can be reused in a variety of different situations is a major strength
T
oy .
o of Ada and should be exploited whenever possible.
N
Y
L
e A. REVIEW
!
- The need for an Ada package to provide programmers with procedures to
:;::‘
; control the serial CRT terminal was indicated by the problems experienced with
b .
oot the standard Ada package TEXT 10. The package TERM IO was developed to
~2r
'n W . . .
P meet this need. The goals sought in the design of the TERM IO package were
-~ -
ey reusability. portability. and ease of application. These goals were met through
Pt
" the use of the constructs of the Ada language that allowed the terminal specific
L)
’ * items of the program to be hidden from programmer’s using the package.
...
",:.-: This thesis has proposed a package specification for an Ada terminal interface
%
WA . . .
'y »ackage that is reusable and portable. An implementation of the features of the
T, packag p
g package and the method for implementing the package on other terminal types
Ry
\'_'-
‘\::.4
I' ‘ X
o 36
s
LK)
\ L]
o
' '\'Jl‘
‘-

PR L S e e e e T T T
e S o o Y e e e o Lo A

[+ Y
*
¥y,
LX)
" . :
oot has been presented. This package can be used by other programmers to design
Ny | .
R better user interfaces faster and easier.
:- 2 The package TERM IO was written to be used in the same manner as the
A% .
[\ N
>
ON ;)
- ,';: standard package TEXT 1O and can be thought of in the same way by the
programmer. The TERM IO package provided the programmer with cursor
R
N control capability to format screen output. with parameter control procedures to
~_
'o.:::‘. change the characteristics of the output text. with input procedures to poll the
et user for input. and with simple character graphics capabilities to improve the
b
N
'\‘ appearance of the screen output.
RN
o
v
LG B. RECOMMENDATIONS
o
L . .
-‘:‘:4 . The package TERM IO should be provided to programmers learning Ada. It
B
' can serve as a useful tool for program development and as an example of a
:::':: reusable package. Many of the problems experienced by the programmer who is
-
new to Ada but has experience in other languages result from the inadequacies of
D
.~ the TEXT IO package. A programmer who feels that he is always ‘reinventing
o
Y .
‘N the wheel™ to do screen output might well find a use for TERM 10.
)
; The TERM 10 package was designed for use with the serial CRT terminal.
aoe.
.
A As Ada applications become available for bit mapped graphics terminals. there
N will be a need for a terminal interface package that provides a complete set of
ff - graphics functions for the Ada language. This area should be considered for
N N‘
M
AN
", :: further thesis research.
LY
'|~‘ .
e 37
)
"Qx
A
a
Vg, oY
(T
R

i
)
A
"'
)
) . . -xq . .
e This theses was undertaken with the sponsorship of the NWC Missile
¢ .
_fo" Software Group as part of a continuing program. The TERM IO package has
.
" been applied to improve the interface capabilities of other past and present thesis
:::E efforts and it will be available for future efforts.
Work on this and other theses in Ada for NWC has been made difficult by
N3
S
" 'j the lack of an Ada compiler for the Computer Science Department computer at
&)
g the Naval Postgraduate School. Currently the school’s only capability in Ada is
_,. the Janus/Ada partial implementation in use on microcomputers at the school.
::}‘,
v Working in the full Ada language required the use of the Telnet or Arpanet
i:_‘ system to work on the China Lake computer system. under a Missile Software
"_:: Giroup account. With the increased use of the Ada language for both thesis
-
~ research and class projects at the Naval Postgraduate School, the acquisition of an
,‘.‘ Ada compiler should be considered.
x|
o The user interface is an important part of the overall programming effort.
ey
< Efforts such as TERM 10 make the writing of the user interface faster and easier
'h‘ . 3
e for the programmer. The hope is that the programmer will make use of the
N TERM IO package to produce a well designed and easy to use interface.
"N
0y
19,
4

R]

DLW

>
.

N 38

T m

" s."‘-\."" "

«H .c " .“ {\f w.v Lol ,rxf o

() l Al Wy

Jﬁ"‘ﬁ' "o - j(‘*"_“.(‘.h .» "’"".\"L T, . ‘\ .q‘._ \,u", _n- ‘:‘)_‘_,
., B o

F‘“mmm‘ WY T N W T R T W (T T U TR W Y R T WY WTY W T W T W WY W W W WY U WP W W W W w7 e U W T W ST owy "W

APPENDIX A

ta'
e
";‘ TERM 10 PACKAGE DECLARATION
3 _
b
B LR R R ERE R R R R R R L R R R R R R R R g g g LT T
-1',.' -- TITLE: ADA TERMINAL INTERFACE
..ﬂ -
"
::: -- MODULE NAME: TERM 10 DECLARATIONS
o --
g -- Date created: 04 MAR 87
-- Last modified: 15 MAY 87
b -
4.:-: -- AUTHOR: LT Anthony J. Keough
“ -
"~ -- DESCRIPTION: This package provides procedures to
-- improve the terminal interface. It should be
A - used with the package TEXT IO to provide a
3 -~ full set of user interaction procedures.
;' _
‘:.- e R R E R R L R R R T TR TR Bl B R R g
(e
i with TEXT 10
it . use TEXT 10:
o .
"v: package TERM 10 is
(>, -
‘
' -~ To use TERM 10 the standard output must be set to
5 -- the terminal screen.
) .,
¢
*»
4
e -- Variable types:
o
' ty e SWITCHTYPE s (ON.OFF);
.:':‘-' - Variables:
e
:':l SWITCH SWITCHTYPE,
P
'-‘
.::
o
-
39
-
b7
GO
-
|
S
x- - - - - - - - . -
N ‘;_*. _'\.J‘\,# .J:- &‘*.-"'-'\.: .“J;:*-J_x__x__- ; N T T A

-- Cursor control procedures:

¥
1,
{ procedure MOVE CURSOR HOME:
.‘d, -- Positions the cursor to the top left position.
:‘ procedure MOVE CURSOR UP{NUM : in integer); -
o
§ procedure MOVE CURSOR DN(NUM : in integer):
o
K procedure MOVE CURSOR RT(NUM :in integer);
“
W procedure MOVE CURSOR LT(NUM : in intezer);
N _ .
N}
o procedure SET CURSOR POS{COLM,ROW : in integer);
: -- Positions cursor to the screen position (COLM, ROW)
fih

-- where {0.0} is the upper left corner.

S procedure GET CURSOR POS({COLM,ROW : ocut integer);
2 -- Returns the screen position of the cursor where (0.0)

: -- 1s the upper left corner.
o

: -- Not implemented. stubbed to return (0.0).
Ky
a
&y --Screen and line clearing procedures:
b procedure CLEAR SCREEN:
p"
4 procedure CLEAR LINE:

" procedure CLEAR CURSOR TO EOL;)
o procedure CLEAR AND HOME:

:“_. -- Clears the screen and positions the cursor to the
* -- home position.

>,
o
,.:_ --Keyboard polling procedures:

< function GET KEY return character;
1 ? function KEYPRESSED return boolean;
P,
b
&

4
W . . o

-- Controls for Reverse Video Printing:

: procedure SET REVERSE(SWITCH : in SWITCHTYPE):
v
- procedure GET REVERSE STATUS({SWITCH - out SWITCHTYPE):
)
L\
": 40
Yy

()
I

) .
' o
\

™ 3 TN o
Lu
el :‘t!‘.q M'l

N . . - W W W Y WYY A T WY YR Y PV T TV TS YW U T WY VW WY W
a

‘.‘.‘";

‘i';'o
DX -- Controls for Bold Face Printing:
9' b

L)
f:l' procedure SET BOLD(SWITCH : in SWITCHTYPE):
LAY -

’ procedure GET BOLD STATUS(SWITCH : out SWITCHTYPE):
o
Bl

g

A --Graphics character printing procedures:

L -- These procedures print one graphics character
-t -- and leave the cursor on that character.

- -- If graphics mode is set when the procedure is called
B -- 1t will remain set. Otherwise graphics mode will
;:;'.‘ -- be set ON and OFF to print the graphics character.
'

S procedure PUT _TOPALT_CORNERi
b procedure PUT TOP RT CORNER:
£ .
i" :’j procedure PUT _BOT LT CORNER;
e
] procedure PUT BOT RT CORNER:
Ly _ LA
.»:ZF procedure PUT HORZ BAR:
N
i procedure PUT VERT BAR:
o
Ko procedure PUT CROSS:
__{ procedure PUT TOP TEE:
.- -
oo procedure PUT BOT TEE:
-

procedure PUT LT TEE;

(S procedure PUT RT TEE;
o
SN
.‘ \.ﬂ
A\.}_“ -- Graphics Drawing Procedures:
o'
- procedure DRAW BOX(COLM,ROW : in integer):
' -- Parameters passed are the upper left corner
-- of the box to be drawn centered on the screen.
procedure DRAW HORZ LINE(LENGTH : in integer):
procedure DRAW VERT LINE(LENGTH : in integer);
<
v::\‘: .
2
o™,
b
T ..'-
e 41
LA
b)
- e
L
W

- -,
] PR

., B L L T
R AP P e A AP S
A e e T s A e AR AT A

T TPl 3 STty TR e
e '\F:(""." -, ‘-)'-""-{‘:‘.'-J\,"_n*'\"'*-

private

--These procedures are called by other procedures in TERM 10.
-- They are not accessable to the programmer.

procedure KEYPOLLER(KEY : out character):

-- Implements the keyboard input method available on the
-~ terminal.

--Graphics controlling procedures:
procedure SET GRAPHICS(SWITCH : in SWITCHTYPE):

procedure GET GRAPHICS STATUS(SWITCH : out SWITCHTYPE};

end TERM 10:

42

¢
Par A

APPENDIX B

A PROGRAMMER'S GUIDE TO THE TERM 10 PACKAGE

This Appendix presents a programmer's guide to the use of the TERM 10
package. A programmer can use the TERM IO package to control the screen
format of a serial CRT screen that uses character control codes. To use the
TERM 10 package. first ensure that the version of TERM 10 that is used is
compatible with the terminal type in use. The control codes of various terminal
types may be different.

The programmer has available in the TERM 10 package a set of convenient
procedures that can be used to improve the screen output. These procedures
include cursor control procedures. screen and line clearing procedures. kevhoard
polling procedures. printing status control procedures. and graphics procedures.
The complete declaration of the package specification is contained in Appendix A.
The programmer using the package should refer to the package declaration for the
format of the TERM IO procedure calls and the typing of the variables.

To use the package TERM IO it must be included with each package bhody
that calls a procedure in TERM 10. This is done by including the statement~

with TERM 10O:
use TERM 10:

43

.
-

+
¢
¥

S

at the head of the package body that calls the procedures in TERM [10. After
this the procedures in TERM 10 can be called as if they were declared in the

package.

Cursor Control Procedures

The cursor control procedures can be used to position the cursor to anyv
position on the sernial CRT screen. The programmer can use this feature to format
the ~creen to presient menues or to display results. These procedures are

procedure NMOVE CURSOR HOME:

procedure NfOVE CTRSOR UP(NUM : in integer):

procedure MJOVE CURSOR DN(NUM : in integer):

procedure MJOVE CURSOR RT(NUM :in integer):

procedure MOVE CURSOR LT(NUM : in integer):

procedure SET CURSOR POS(COLM.ROW : in integer}:
The procedure MOVE CURSOR HOME moves the cursor to the upper left
position on the screen. The procedures MOVE CURSOR UP 1o
MOVE CURSOR LT allow the programmer to vary the amount of the cursor
movement using the parameter NUM. This might be useful in applications such
a~ drawing various size lines or positioning text based on the varying size of a
tigure. The procedure SET CURSOR POS{COLM.ROW : in integer) can be
n~ed to set the cursor position to any position on the terminal screen. A procedure
call of SET CURSOR POS(0.0): i~ the equivalent of the call
MOVE CURSOR HOME. In the original implementation the procedure

GET CURSOR PON s not implemented. It alwavs returns (001,

44

T Card o a4 A s A T TwTew e e 2 R 2o e ke ik e i Al T

;
Y
o
. Screen and Line Clearing Procedures
"
" The screen and line clearing porocedures can be used to erase all or parr of
:‘ the terminal screen. This i~ especially in an interactive situation where the
K
:: programumer Is changing only part of the display. These procedures are
o
:. procedure CLEAR SCREEN:
procedure CLEAR LINE:

,‘\‘\: procedure CLEAR CURSOR TO EOL:
)

As the procedure names indicate. CLEAR SCREEN erases the entire screen.
b i
2 CLEAR LINE erases the entire line that the «cursor is on. and
2
" CLEAR CURSOR TO EOL erases the part of the current line to the right of the
.
b cursor ncluding the cursor postion. None of the screen and line clearing
b
k- procedures change the position of the cursor.

o Keyboard Polling Procedures

The keyboard polling procedures can be used in interactive programming to

) get input from the program user. This input can be in the form of a one character
' L]
}_{ answer such as a menu choice or hitting a key to signal that the user is ready to
Y
N
K\ move to the next step. The kevboard polling functions are
[Wy
._i
o function GET KEY return character:
T . 1y e
v function KEYPRESSED return boolean:
P-J
-4

The function GET KEY is used to get a specific character response from the user.

T A call of

S

< s gl ol e

S,

o 1

»

el an s B ord LY

Ve¥e e a”a’

s ' e v W
BT ,

-

NN |

..... e Bl £ aht 2 A e aa A 0 S Gnd Ad aus 2.8 Aek faas Sed God Sud Sed Aad Al Sae And Sob deah e et oAl dihlo R el ol i i

AN~ = GET KEY:

put~ the user’'s answer in the variable ANS. One application of this feature s
menu selection. The function KEYPRESSED returns true if the a key on the
kevboard has been pressed. This can be used to allow the user to signal that he is
ready to continue after reading instructions. for example. A simple waiting loop
~1ch as

while true loop

#f KEYPRESSED then exit: end if:
end loop:

wait~ for the user to hit a key on the kevhoard.

Printing Status Control Procedures
The procedures for control of printing status allow the programmer to specify

bold face or reverse video printing. This can be used to emphasize the headings
displaved or the menu choices. These procedures are

-- Controls for Reverse Video Printing:

procedure SET REVERSE(SWITCH : in SWITCHTYPE):

procedure GET REVERSE STATUS(SWITCH : out SWITCHTYPE):

-- Controls for Bold Face Printing:

procedure SET BOLD(SWITCH @ in SWITCHTYPE):

procedure GET BOLD STATUS(SWITCH : out SWITCHTYPE}:
These procedures use the variable SWITCH of type (ON.OFF) to set the bold
face or reverse video features. The procedures GET REVERSE STATUS and
GET BOLD STATUS allow the programmer to check the status of these

46

n.i_\-‘“f‘ «.‘,.__’,‘,\f'\.-q. \" \\‘

o T ey

- -
et B0 0 ¥ g

l“ o

vooy

L)
-

)

»,

‘ ",'k"i:i :' a0 l" »

R e e S, R e S e S e e S el
N T G A S P e O A S R b

features in the program. A call of
SET BOLD(ON):

would set the output print on the terminal screen to boldface type until a call of

SET BOLD(OFF):

restored the print type to normal.

Graphics Character Printing Procedures
The graphics character printing procedures allow the programmer to design

simple shapes and graphs in Ada for the serial CRT terminal screen. These

procedures are

procedure PUT TOP LT CORNER:
procedure PUT TOP RT CORNER:
procedure PUT BOT LT CORNER:
procedure PUT BOT RT CORNER:
procedure PUT HORZ BAR:
procedure PUT VERT BAR:
procedure PUT CROSS:

procedure PUT TOP TEE:
procedure PUT BOT TEE:
procedure PUT LT TEE:

procedure PUT RT TEE:

These procedures each print a single graphics character on the screen at the
current cursor location. A programuer can use these procedures to make a shape
by positioning the ecursor and printing each character at the desired screen

location. The procedures leave the eurrent cursor location at the location of the

47

A‘:

S Bes ioa s s s ma A AL A A s Ak o i A b g S d-a ata A hle die Abe Al Ahe i e ddeciie Mt ik ol ant sk el bad ek hadh B

rraphics character. The programiuer must reposition the cursor before ecach new
124

character is printed.

Graphics Drawing Procedures
Neveral basic drawing procedures have been provided in addition ro the

character printing procedures. These procedures are

procedure DRAW BOX{COLM.ROW :in integer):

procedure DRAW HORZ LINE(LENGTH :ininteger):

procedure DRAW VERT LINE(LENGTH @ in integer).
. Thes<e procedires are easier 10 nse ta draw simple shapes than the enaracrer
v

printing procedures. The procedure
DRAW BOXICOLN.ROW : iy nregery:

draws a box centered on the screen with the upper left corner of rhe box at
- FCOLNMROMW) Thie procedures DRAW HORIZ LINE and
DRAW VERT LINE draw a iine from the current cursor position of length

y LENGTH

Private Procedures
The private procedures are not accessable to rthe programmer. These

- procedures are used by the other procedures in the TERM 10 package.

48

e e e . TN Lt LS R RIS AN R
I I A L MU <. o LA 'n, "~ A J\;v’\,j‘ N
AN s A A ._A;..ﬁ A ..}.;_.‘_ _.:' PP a.A['_A.\.A ‘.AhA.'.“.)\A.'m'}LA TRV, U *‘.A“.A* .!..".A LA]‘

sample Menu Maker

- e i -
b Aae de ohie ol ake e bt e Al Ano-dho gl il ~ah e 2ol o Aaf obhhobal kel ek lat ek balk bl bl el el bl i i R Ea i

This procedure is an example of the use of the TERM IO package. It shows

now a programmer might use the functions of TERM 10 to write his own

"ertinal nterface procedures. It produces a ~imple menu and gets a menu

selection from the user.

orocedire MARE MENUVTITLE. OPTL1. OPT?2. OPT3.

OPT4. OPTS -

in string(30):

AN~ out character):

t LEAR ~CREEN.

MOVE ¢ URSOR HOME:
DRAW BOXiISZ3):

~ET ¢ I'R<OR PO=i18.7).
~ET BOLDION):
utTITLE .

~ET BOLD{OFF.

~ET CURS~OR POSt15.10);
ot (A"

ot (OPTL

~ET CURSOR PO~N(15.12):
;)11"(”8. ”’:

out{OPT2).

~ET ¢UR~OR POS{15.14):
put("e "y

put(OPT3):

SET CUR~OR POS(15.16):
put("D. ")

ot {OPTY):

SET CURSOR PON(15.1%):
put{"E. ")

put(OPTS)

~ET CTURSOR PO=N(5.23)

putt"Enter letrer of chowee. A - E7):

while true loop
ANS - GET KEY:
case ANS |-

19

T

when "A7"a ' B'b|'Cl ¢ T DT'dTE e = exit:
when others = null:
end case:

end loop:

end-

This procedure constructs a stancard menu on the screen. It draws a border.
prints the menu title in boldface, presents five menu choices and waits for the user
to respond. The menu title and options can be strings up to 30 characters long.
The procedure MAKE MENTU shows how the programmer can use the TERM 10
package to format the screen output and control the movement of the cursor.
When called in a program the procedure MAKE MENT allows the programmer
to set up the menu and get the user choice with as little code as possible. The
result in the program is very clear and concise. A procedure call of

MAKE MENTU({"Project Title".
"Run Program".
"Show Listing".
"Set Options".
"Get More Information".
"Exit To System"
ANS):

i~ all that is required to print the menu. wait for the user choice. and return the

choice to the program.

« &

-1',’ >
< J"J...‘.'f"-’ /d

,\
-

YAy
SOAE

r

pad o P vy KA
P oy ("-."\":?

»d

APPENDIX C

TERM 10 PACKAGE BODY

AEETXXRAEXXXAXEIEEEXEEXXRXASARAX S XN X IR A XXX KAXNR KT XX KL X AN XXX KX RE KK XK %

-- TITLE: ADA TERMINAL INTERFACE

-- MODULE NAME: TERM 10 BODY
-- DATE CREATED: 06 MAR 87
-- LAST MODIFIED: 15 MAY &7

AUTHOR: LT Anthony J. Keough

-- DESCRIPTION: This package body implements the
-- TERM 10 package for the VT - 100 terminal
-~ using the ANSI control code sequences.

KT EE AR EE AR K EERARRARAKKA AR KKK R R KRR AR R ARk E e
with TEXT [0

use TEXT 10:

package body TERM 10 is

-- Terminal parameters:

~CREEN LENGTH : constant : - 76:
SCREEN HEIGHT : constant :~ 24;

-- ANSI Control code sequences

CLRSCR : ronstant string : = (ASCILESC. ""2°.°J)"):
HME : constant string : = (ASCILESC." .'f"):
ONRVRS constant string - (ASCILESC. "7 'n’):
OFFRVRS : constant string © {ASCILESC. 7707, m'):
UPCRSR : constant string @ (ASCILESC. U177 A7):
DNCRSR - constant string - (ASCHLESC "1 B
RTCRSR constant string - - (ASCILESC. " 17.°C7):

L TCRSR constant string © (ASCILESC, "1
CLREOL - ~onstant string © {(ASCILESC. "K):
CLRLNE constant string - (ASCILESC. "2 'K):
ONGRAF ronstant string - {ASCILESC(".07):

. . . . T O T VT A T T T T ...W.—-‘-.w'w'vmwm“w
L)
>

'\:
B '
M
4 OFFGRAF : constant string .~ (ASCILESC.'(".'B’):
:',:l ONBOLD : constant string -~ (ASCILESC. ""1'.'m’);
fp: OFFBOLD : constant string :~ (ASCILESC." ".'0" 'm’):
KN
) -- VT - 100 Terminal Graphics Characters:
.. . These characters print as graphics characters ‘
™ -- when the terminal is in the graphics mode.
¢
:‘: UPLTCR : constant character :~ | .
UPRTCR : constant character : = 'k’;
DNLTCR : constant character := 'm’;
"y DNRTCR : constant character : - 7’
‘l HORZBR : constant character :- 'q’;
5 VERTBR : constant character : — "x’;
‘o CRSS : constant character := n":
! UPTEE : constant character :- 'w':
DNTEE : constant character : - 'v';
[1/
&3 LTTEE : constant character := 't’;
! : RTTEE : constant character : - "u’;
‘1
s
'y
s -- Terminal Status Variables:
L
. REVERSE STAT : SWITCHTYPE = OFF:
' BOLD STAT : SWITCHTYPE :- OFF;
~"; GRAF STAT . SWITCHTYPE : - OFF: |
v
2 -- Other variables:
\.’ NUM :integer: -
e
-
1O
Y -- Cursor Control Procedures:
2
" .
: procedure MOVE CURSOR HOME is
K) ' N
¢
K
,Q:O -- Positions the cursor to the top left position.
ha
A begin
::. put{HME}:
o end:
-‘.
s
) procedure MOVE CURSOR UP{NUM : in integer) is
F y
= begin
.’ for Than 1.NUM loop
3 put(UPCRSR):
.:" end loop: 4
-t end:
e 52

b
y

o, i) :'g '& y’C"S L P o Pu VA P P B i Ty LS L e S A,
LM AR } :f:i:frf}fr&h‘;x‘$-£4ﬂ1ifkiL{A:S:n_{‘.fb.{h{hm '.Ln{'x o BV

procedure MOVE CURSOR DN(NUM : in integer) 1s

begin
for Iin 1..NUM loop
put{DNCRSR);
end loop:
end;

procedure MOVE CURSOR RT({NUM : in integer) is

begin
for I'in 1..NUM loop
put{RTCRSR):
end loop:
end;

procedure MOVE CURSOR LT{NUM : in integer) is

begin
for Iin 1..NUM loop
put{LTCRSR}:
end loop:
end;

procedure MOVE CURSOR POS(COLM.ROW : in integer) is

begin
put{HME):
for Tin 1.COLM loop
put{RTCRSR}:
end loop:
for I'in 1.ROW loop
put(DNCRSR):
end loop:
end;
N
Al
>~
W
N
W
o
53
N
2

IR . 1 Pt LT R R R R PR S R ¢
A e xxl,q:__.*s{\. ATV R W M

» » 3 K

LA ik

Pl el §

procedure GET CURSOR POS(COLM.ROW : out integer) is

-- This procedure is not implemented.
-- To use this procedure a hardware specific

-- call must be written for the procedure body.

-- The procedure only returns (0.0).

begin
COLM -0
ROW - 0
end:

-- Screen and Line Clearing Procedures:
procedure CLEAR SCREEN is
begin

put{CLRSCR):
end:

procedure CLEAR LINE is
begin

put{CLRLNE):

end:

procedure CLEAR CURSOR TO EOL is
begin

put({CLREOL):

end:

-- Keyboard Input Procedures:

function GET KEY return character is
-- Gets a single character input form the user.
KEY : character:

begin

KEYPOLLER(KEY):

e
WL

-.‘-'.-J_u.\‘\.-.-.k 'g‘h

LSRR, R LRE RS
L) L)

s

Y

il

~
-

""\."'*. b,

e
I'g

a5 NS

=

’ .‘1 r\
l.‘j-»

-
B .
FRENEREA

B,

*
b

X A

R X
- .
it

R
-
v

Pyt

o e WYV TU YW W W WrTRPTANTIRTOr T O v oY T WST WY w

return KEY;

end.

function KEYPRESSED return boolean is

-- Returns true when the user has entered a key.

KEY : character:

begin
KEYPOLLER(KEY):
return TRUE;

end:

procedure KREYPOLLER!{KEY : out character) is

--This procedure can be modified to eliminate the
-- need for carriage returns by providing a
-- system specific kevboard polling routine.

begin
get(KEY):
end KEYPOLLER:

-- Printing Status Control Procedures:

procedure SET REVERSE(SWITCH : in SWITCHTYPE) is

begin
if SWITCH = ON then
REVERSE STAT := ON:
put{ONRVRS);
elsif SWITCH = OFF then
REVERSE STAT := OFF:
put{OFFRVRS):
end 1if:
end.

procedure GET REVERSE STATUS(SWITCH : out SWITCHTYPE) s

begin
SWITCH - REVERSE SsTAT:

[y)
(441

ol

PN W

end.

procedure SET BOLD(SWITCH : in SWITCHTYPE]) is

begin
if SWITCH = ON then
BOLD STAT := ON:
put(ONBOLD):
elsif SWITCH = OFF then
BOLD STAT := OFF:
put{OFFBOLD);
end if:
end;

procedure GET BOLD STATUS(SWITCH : out SWITCHTYPE]) is

begin
SWITCH : -~ BOLD STAT:

end:

procedure SET GRAPHICS(SWITCH : in SWITCHTYPE) is
-- Private Procedure

begin
if SWITCH = ON then

GRAF STAT := ON:
put(ONGRAF):

elsif SWITCH = OFF then
GRAF STAT := OFF:
put{OFFGRAF);

end if;

end:

procedure GET GRAPHICS STATUS(SWITCH : out SWITCHTYPE) 1s
-- Private Procedure
begin

SWITCH GRAF STAT.

end:

\ ‘J' T T ..r_‘-r ¢$(

« Wi

L add b ofh e ol Tem N bl o Labhh bt gl act Ail Aut A Sd ach dak ball Lot Sbhet e Mt M At

KN
2
o
v
::'; --
14N
::s' -- Graphies Printing Procedures
e,
‘ procedure PUT TOP LT CORNER 1s
:';". begin
W GET GRAPHICS STATUS(SWITCH);
_ if SWITCH = ON then
._, put(UPLTCR):
5 MOVE CURSOR LT(1):
o elsif SWITCH = OFF then
& SET GRAPHICS(ON).
Ot put{UPLTCR):
MOVE CURSOR LT(1);
;,;:;a SET GRAPHICS(OFF):
l‘k! end if;
‘.‘!' \ end:
g
2:,"}',:
st procedure PUT TOP RT CORNER is
. -':, begin
‘_-':; GET GRAPHICS STATUS(SWITCH}:
" ,-_-;, if SWITCH = ON then
K0 put{UPRTCR):
MOVE CURSOR LT(1):
L elsif SWITCH = OFF then
s SET GRAPHICS(ON):
» put(UPRTCR}:
it MOVE CURSOR LT(1);
" SET GRAPHICS(OFF):
J end 1f;
2 end:
e
Y
. procedure PUT BOT LT CORNER is
t
_ begin
"y GET GRAPHICS STATUS{SWITCH):
.,- if SWITCH = ON then
i ‘::: put(DNLTCR}:
‘] MOVE CURSOR LT(1):
MY elsif SWITCH ~ OFF then
» SET GRAPHICS(ON).
"' i put{DNLTCR:
X # MOVE CURSOR LT(1):
7 SET GRAPHICS{OFF).
é g end f;
':'v. end.
1 57
L/ o«
-"_‘
o,
-~
s
]
3 ‘ [
o o o g Wy T A " T et et e T T Tt ATt AT e AT T T T T R P CIC S
!.'..’ f.,'.\,"; '. ._’.__ .._,-.’:.’:_.A_:_;-.’_-_.".,‘. T A AT N aoe o A e

procedure PUT BOT RT CORNER is

begin
GET GRAPHICS STATUS(SWITCH):
if SWITCH = ON then
put{DNRTCR):

MOVE CURSOR LT(1):
elsif SWITCH - OFF then
SET GRAPHICS{ON}:

put{ DNRTCR}):
MOVE CURSOR LT(1):
SET GRAPHICS(OFF);
end if.
end.

procedure PV'T HORZ BAR 1s

begin
GET GRAPHICS STATUS(SWITCH).
f SWITCH ON then

put{(HORZBR):

MOVE CURSOR LT({1}):
elsif SWITCH - OFF then
SET GRAPHICS({ON).

put(HORZBR):
MOVE CURSOR LT{(1):
SET GRAPHICS{OFF):
endaf.
end.

procedure PUT VERT BAR is

begin
GET GRAPHICS STATUS(SWITCH).
fSWITCH ON then

put{(VERTBR).

MOVE CURSOR LT(1).
elsif SWITCH OFF then
SET GRAPHICS{ON)

put(VERTBR].
MOVE CURSOR LT
SET GRAPHICS(OFF).
end of
cned

v — - T - Lhad aan b acd Aok ool o dol Lok lad AR A A4S 4l AR ass ooy Sae 4
o

o
'9* "
W
1 procedure PUT CROSS s
. L0
’: a begin
e GET GRAPHICS STATUS(SWITCH].
. if SWITCH - ON then
. . . put (CRSS);
:;.- MOVE CURSOR LT(1):
e elsif SWITCH - OFF then
"2;) SET GRAPHICS{ON):
« N put(CRSS);
MOVE CURSOR LT(1).
200 SET GRAPHICS(OFF):
SN end f:
f;.: end.
S
A
procedure PUT TOP TEE is
O
::: begin
N GET GRAPHICS STATUS(SWITCH):
ol f SWITCH © ON then
vy putiUPTEE):
. 2 MOVE CURSOR LT(1):
= elif SWITCH - OFF then
By SET GRAPHICS(ON):
’ﬁ.'_-: put {UPTEE):
s MOVE CURSOR LT(1):
e SET GRAPHICS(OFF);
end
- end:

LA
A

XN NI < 3
‘s,

- procedure PUT BOT TEE s
J begin
- GET GRAPHICS STATUS(SWITCH):
N if SWITCH - ON then
i:- put(DNTEE):
b MOVE CURSOR LT(1):
o elaf SWITCH OFF then
— SET GRAPHICS(ON):
o9 put{DNTEE):
N MOVE CURSOR LT(1).
{;{ SET GRATHICS[OFF):
:.-:‘ end f
)¢ end
F. ~ |
I \
-'_:-' |
'*.\'; 1
e !
Y v
e 59
DSy I
o8 Sl i
o |
; |
oty !
i |
@
Lo
o
'f\ o - -{,'.‘_.". - 'H‘\f FOAS TN .\’ .’._‘--_ "l"? R ."'4'\'{"(' '\ \.n, .-.-_.:_ Y '.(“‘
l"l"u R YOyy * ‘ A «",h.,, g . U s {a¥n v ’ ., Qe

procedure PUT LT TEE 15

begin
GET GRAPHICS STATUS(SWITCH).
USWITCH ON then
put(LTTEEY
MOVE CURSOR LT(1):
elsif SWITCH OFF then
SET GRAPHICS(ON], -
puti LTTEE}
MOVE CURSOR LT):
SET GRAPHICS(OFV).
end f

#N.

procedure PUT RT TEE s

begin

GET GRAPHICS STATUS(SWITCH).
f SWITCH ON then
s>ut(RTTEE):

MOVE CURSOR LT(1).
plaf SWITCH OFF then
SET GRAPHICS{ON),

sut{RTTEE)

MOVE CURSOR LT(1).
SET GRAPHICS(OFF):
end af

end

60

gt
o

,.:-: procedure DRAW BOX(COLM.ROW . in integer) is

o~

"';}l -- Draws a box centered on the screen with the upper
A -~ left corner of the box at position (COLM, ROW)
\~ begin ‘ .
o CLEAR SCREEN:
N SET GRAPHICS{ON):
Dy MOVE CURSOR POS{COLM. ROW)
15 put(UPLTCRY);

) for Lin COLM..(SCREEN LENGTH - COLM - 2) loop
g put(HORZBR):
':'-: end loop:

N put(UPRTCR):

3O MOVE CURSOR DN(1):

MOVE CURSOR LT(1):
for I 'n ROW . (SCREEN HEIGHT - ROW - 2) loop

& put(VERTBR):
_.‘_t:- MOVE CURSOR DN(1):
d o

MOVE CURSOR LT(1):
end I\i()pl

put(DNRTCR):

oL S o0
‘3 v
P

L2 MOVE CURSOR LT(2):
',:v: for 1 in COLM.(SCREEN LENGTH - COLM - 2) loop
sl put{HORZBR}:
e MOVE CURSOR LT(2).
'-'.:t end loop:
. put({DNLTCRY):
) MOVE CURSOR UP(1)
*_: MOVE CURSOR LT{1)
o~ for I'n ROW (SCREEN HEIGHT - ROW - 2) loop
.-:: put{ VERTBR):
;-. MOVE CURSOR UP(1).
te MOVE CURSOR LT(1).
) end loop:
-,'-_- SET GRAPHICS{OFF):
::-. ond;
-
A} #.
-\:
NN
3
",
\I:
"N
B!
L) Wy ‘
>
-)."\ |
3 |
"
',_1
"'5
] L4
“f\" 61
!‘l‘
8
KA
o
,'!,
O
...'
.
*“ GAGRY AR Cn e AA TR LI PN R SR L RAONOAE R ALY
) Z50Ns i\ 3 170 &M&.ﬂl\kr iy - 4 n y

procedure DRAW HORZ LINE(LENGTH : in integer) s

begin

SET GRAPHICS0ON),
put{LTTEE).

for T''n 2 LENGTH loop

putiHORZBR):

f’n(i li\()‘l

SET GRAPHICS[OFF;
end:

procedure DRAW VERT LINE(LENGTH . in integer) 1s

begin
SET GRAPHICSION).
put{DNTEE)
MOVE CURSOR LT(1).
MOVE CURSOR UP(1).
for I in 2 LENGTH loop
putt VERTRR).
MOMVE CURSOR LT(1)
MOVE CEURSOR UP(1).
end loop
SET GRAPHICS/OFF
end

«nd TER\ 1o

§)

[3]

AP AN TR (R R L L TPV DR RN
QR g e 0 RN D A P O IO

s

o Pgins A ok Bt Aot Aed 0h - Ad- S ANE Aba A A Ale Sun Sha iha-the aus afen M e sal ol
!‘\‘
'y

APPENDIX D

ANSI STANDARD AND VT - 52 TERMINAL CONTROL CODE SEQUENCES

Function ANSI Terminal VT - 52 Terminal
Cursor Up ESC [Pn A ESC A
Cursor Down ESC [Pn B ESC B
Cursor Right ESC [Pn C ESC C
Cursor Left ESC [Pn D ESC D
Home Cursor ESC [H ESC H
Position Cursor ESC [PI; Pc; H ESC PI, Pc
Reverse Video On ESC [7 m -
Reverse Video 0Off ESC [O m -

Bold Face On ESC [1 m -

Bold Face Off ESC [O m -
Graphics On ESC (O ESC F
Graphics Off ESC (8 ESC G
(Clear Screen ESC [2 J -

Clear Line ESC [2 K -

(lear To End of Line ESC [K ESC K

e A e P A e e st s e e e r
_‘-'.?-‘:\t\..'n,.:‘s'g.\ e i e A

.
......
-’

e
Y

.

- " \
WY \:‘:'.':

WV P T T e T TTeTrTe Lgeam g abie AL A oat ala oog oed adl i aca o \ad

APPENDIX E

MODIFICATIONS TO THE ADAMEASURE USER INTERFACE

The package TERM IO was applied to the AdaMeasure program to illustrate
the use of the package and the benefits of the package in the areas of readibility
and ea~e of use. The modified section of the AdaMeasure package
MENU DISPLAY is presented. followed by the original package. It should be
apparent that using the TERM IO package made the job of coding the user

inrertace faster and easier.

Modified Package MENU DISPLAY)
The TERM 10 package was used to modify the MENTU DISPLAY package.
The MAKE MENU procedure presented in Appendix B was used to modify the
proceéure MENU. illustrating how a standard menu procedure can be employved.
The procedure INITIAL MENTU was modified using the TERM [0 functions
direetly for a “custom design’ interface.
wor GENERAL DATA HALSTEAD DIESPLAY INITIAL DISPLAY DISPLAY SUPPORT
GlLOBAL PARSER GLOBAL TEXT [0 TERM [0
S GENERAL DATA HALSTEAD DISPLAYINITIAL DISPLAY. DISPLAY <t PPORT
GloAl PARSER GLOBAL TENT 0 TERM 10 (

i1 oeace MENT DISPLAY >
i1 oeaare NENI

g s INTTEAD NIRRT

64

TR o - Nl et SN el '--1‘
e e ’
) , {MAL{L"LM\L_xIL_{\fA.\m ._‘Liuxt\ T e

'y
o

N end MENU DISPLAY.

~

.\ --
A\ package body MENU DISPLAY s
\
"y - thas procedure displayvs the metric selection menu from which the user
il

- can make the appropriate selection
procedure NIENU s

-

L - tegin
: MARE MENU{"METRIC SELECTION MENU™",
w "HALSTEAD METRIC".
3 "COMMENT AND NESTING METRICY.
> "HENRY AND KAFURA METRIC.
"EXIT TO MAIN MENU"™.
g "EXIT TO SYSTEM™.
= AN~
‘: e AN S
. whaen A HALSTEAD
. when H VIEW GENERAL
a when ¢ VIEW HENRY
2 when D) DONE TRUFK
-2 wher | Fase QUIT TO 0N
R P
B crd Loy
h e MENT
N Sos preceanre dispiavs the mam selects o menn which allows the iser
. ot cheose o parse a e view prev a1y vathersd data or quir 1
v - TNe e Ttng s s te
. s edure INTTIAL MENT (S
18
A INTRODUCTHON
N CTEAR ~CREEN
[N
K MOAE 1 RSOR HoNE
DRAW RBONe
N ~t1T CUVRSOR Posoe 7.
~ ~H T RO THON
:: S N A Nee o Mer g
. SE T BOTIHORE,
_. ~E D et E~ok oS
ot
R o b e e T
o SET U Esof Pose e
‘:' R
o S TN e Py et haere Dy
W St ool b ~ok Posi oty
N 65
¥

Ay - e R SRR R s

NN . R - -.._ el ST TR S ..“.(¢ J..I - e {‘*~ A)'. ..; . ™, ".;... s ",."P_..'
. Y AT IR e PN SRR s N LA - L ATOIL N A Tl TR 19 Y »
% OL PPN C S G A YN VR TRV P VIR DS % P T ,.nﬂ._.g,".a..‘mwm:m

0w’

put{"3. ")
put{"Exit to operating System'”}
SET CURSOR POS(6 22)

M putt”"Enter number of choice)

25y

1,

by

while true loop

as
o ANS GET KEY

‘::: case ANS 1»

R when 177278 e,

':": when others SET CURSOR POS(29.22):

al CLEAR (1 RsSOR TO EOL
s end case.

,:.'-:. end loop

.:» case ANS -

iﬁ.i when 1 RESET PARAMETERS

o INITIAL SCREEN

' MENT

", when 2 MEA
, ':'_, when 2 rat~e QUIT To o~
v erd case
?xig srd INETIAL MENI
2N
SN .

: S MENT DISPLAY

a

o

PN

-:.::',. Original Package MENU DISPLAY
Y,

. In ~he onginal package menu isplay the difficuities that the programmers
.

2 . |

_,::: nadowith the sereen outpur are apparent. The programmers were required to
.

. specify the chiaracter for eack sereen loacation. This leads to the chimbsy repeated
J
" _ poit and new hne callss Even the spaces berween the lines have to be printed in
Ko

\"_\ . N

;.: order rto print the border. The asterisk svibol was used 10 put the border around
S

‘he menu selections The code s dificult to write and evern, harder to read.

A GENERAL DALY HALSTEAT DISPLAY INTUIAL DISPLAY DISPLAY 1 PPORT
CLOBAL PARSER GOl TENT T

—~ e PN DT I T A DISEEAY CINEUIAL DISPLAY DISPLAY 1 PRok |

e LoD i AESER Lo TENT Qe

e vorass BN -y
R o \1|\\’
NETEY A

!

»
|
(Y-

)

AN

AR

o

Pl 5d
'

P
G % N

RN AT . e At e

e e e e e e et e e e et s ety AN T N W
>N, P, T, R, T LT, U R T O VR) PV - TS YRR PR iy UG 0 DA U DY T P T VR W ARG, A \.\A-‘f

’. L]

55y
"l .l “ ‘l

-
Ot}
S e

L)

T I A W S T L G T A 6 SRR Sy S,
o A A R A A AR A A A i VA R b

end MENU DISPLAY.

package body MENU DISPLAY s

-- this procedure displays the metric selection menu from which the user
-- can make the appropriate selection.
procedure MENU 1s
DONE boolean : FALSE:
hegin
while not DONE loop
CLEARSCREEN.
new line;

‘u‘(qvtltxxxxxx!«xtxtxxxxlxxxx(x1Rxl!llxttxxx*)txxkitxxtlxxx‘!n)
. .

put("TTr T en e,

put{"*® "y,

put{” *"). new line;

put{"* METRIC SELECTION MENU AR

puc{"” ") new line:

put{"" ")

puat(” *"}): new line:

pur("® HERE ARE THE INFORMATION CHOICES AVAILABLE"):

put{"” TO YOU "1 new line:

" "),

pat (" *'): new line:

pur("* Simply enter the number of your choice");

par(” “'Yonew line:

put"* ")

put(”). new hne:

pat{"" 1 - 'HALSTEAD METRIC INFORMATION ")

prc” "} new line:

our("T ")

putg”). new hine.

parge 2- COMMENT AND NESTING METRIC INFORMATION");

puri” ") new lLine:

put”" ")

gt "} new hne:

pare’ 3 - HENRY and KAFURA" METRIC INFORMATION)

pare” ") new line

par T "

Pt new line

et 1- EXIT TO NAIN AMENIT "

P U onew Line

P RRE

Lo ronew line

P S AENTT TO OPERATING SYSTEM ")

P onew e

P

P mew |one

N e e Crrerresaescanaany
67

S Aah Al et dan Gas Rot Sat fes gob Sav i 'V"W'“

:' pu[("“‘,.“““““"“-',‘”); n(,“ l|nP(2)_
i : put{"Choice = "):
fg‘::' get (ANSWER):
Rk get line(DUMMY FILE NAME. LENGTH OF LINE):-- flush system input buffer
e new line{2}:
A Fa -

2 case ANSWER s
‘ _‘}{ when 1" = » HALSTEAD:

- when "2 = - VIEW GENERAL;
e when 3 - VIEW HENRY:
ay when 4" - - DONE: TRUE:
- when 5" = ~ raise QUIT TO Os:
ey when others - - null:
S
"9',\ end case:
I';‘\ end loop:
s end MENU:
oY
.y
oy - this procedure displays the main selection menu which allows the user
‘" - -- te choose to parse a file. view previously gathered data. or quit to
f “-:{ -- the operating system

procedure INITIAL MENU 1s

{4

DONE - boolean FALSE.

ﬁ. imgin

2 INTRODUCTION.

Yy while not DONE Hoop

A CLEARSCREEN:

a new line.

‘ R R P T TP T

.".:‘::- p”t(vylx:xxt(xxxxxxxtt-l(xxt:u)Ine“ line:

SR pur(”" "

._~‘ put(” *"): new line:

o put(”” MAIN SELECTION MENU "):
y put{” *"). new line:

J i o
7,

-._'-':‘ pur(” “"): new line:
.*:.;, pur("” HERE ARE THE ACTION CHOICES AVAILABLE TO "):
".\':‘ put{"YOU *): new line:

T "y

M put{ . R

L% put(” "} new line;

N pur{"® Simply enter the number of yvour choice™):

7 put{"” ") new line.
' put("” "),
1 " x 1 :
L. put(): new line:
put{"” 1 - PARSE AN INPUT FILE ")
N put(” “"): new line.
PG put{"* "

"_-"rj put{”). new hine.

) ‘::-' pur{"” 2- VIEW PREVIOUSLY GATHERED DATA ")
‘\-;.i:j put{"” "onew hine,
SN e[»

v v " .o

jrut| . new Jine

7

’:',-' 68
.a“:'
f::«'.'
oS -

=

N

0

N U, . e e oL
',0,. put("* 3 - EXIT TO OPERATING SYSTEM ")

o put(" *"). new lhne:

) put("* ")
," put("” *'"). new line:

‘)ult!'!tll‘l‘tiittltlltlt(xlxllx!t‘llt!llll(:lt;"‘ll;xtntlxttt”)

N put{"eTTE e e o (D)

- put{"Choice - "):

N get |(ANSWER):

:,.: get line(DUMMY FILE NAME. LENGTH OF LINE):-- flush system input buffer

new line(2}):
case ANSWER s
v when 1" = - RESET PARAMETERS.
:, INITIAL SCREEN:
r.” MENLU.
:.r

: when 27 - MENU:
o when 37 - raise QUIT TO OS,
when others - - null;

P end case:
ﬂ\: end]Amp;

A end INITIAL MENU:

‘.‘i

Dy
ar-

L end MENU DISPLAY.
.“-
28
-.“

“~

P

-

w

t

4

¢

A A

-
 ELL

& 3

lotte gt i e

sl
‘.- "-

X

r"{ "

»

NN

1
t

69

b A
. L’g’t. LS

Y BTN R ¥ v Py MU P_",",u",""{ ‘T
) A [v » LS
'\‘.'n‘?‘l.A.Q .’l .M: 1900 .‘," l'l !h AN \ “' A

T S . 1Y RSN SN PR Y U R RN R Y
.."'.inl’.\"l n.'('q.':-"q.'- -J-, .-_';‘,4 e ,-Al 4. 0'1' - ,"n ”;‘ -f.‘(.l oY ,L., y x . #

9

s : e ¥ a
o Lo

.

>
s

R

.‘ l"

L

EAA

XA
LSCSANNGS

| A

“

"
)

2 |

b 28 & [y
35
a“: 27
..,.‘l.":

’:ﬂ: :{'-.s

J
&
A

AR RSN YA Gl AR LA I s a0l ath ahd ol Jhe-adia' add-odd _aa el sei s
"

(&%)

LIsT OF REFERENCES

Neider. I and Fairbanks. K.. AdaMeasure: An Ada Software Metrie, M.S.

Thesis. Naval Postgraduate School. Monterey. California. March 1987.

~TAR> Joint Service Team. Preliminary System Specification. Software
Technology for Adaptable Reliable Systems. Software Engineering

Environments, 30 January 1986,

Rosen, J.P.. On the Use of TEXT IO on Interactive Terminals. Ada
Applications and Environments Conference. IEEE. October 1984, pp. 76-80.

Barnes. 1.G:.P.. Programming in Ada. 2nd ed.. Addison-Wesley Menlo Park.
California. 1984.

ANST " MIL-STD-1815A. Military Standard, Ada Programming Language.

22 January 1983,

Borland International. Turbo Pascal Reference Manual, Scotts Valley.

California. June [9%5.

Digital Equipment Corporation. VI-100 [ser’s Guide, Nayvnard.
Massachusetts, 1979,

Norton. Peter. Programmer’s Guide to the [IBM PC. Microsoft Press.

Believaue, Washingtorn. 19%5.

ANSI Terminal Interface Stundurd. New York. 1975.

INITIAL DISTRIBUTION LIST

\()4 (.U‘)Il'\

) 1. Defense Technical Information Center 2
N Cameron Station
o . . ; -
"o Alexandria. VA 22304-6145
t'x'-
“ . R N
2. Library. Code 0142 2
y' S Naval Postgraduate School
‘_ Monterey. €A 95943-5002
h)
‘ 3. Department Chairman, Code 52 !
v Department of Computer Science
Naval Postgraduate School
L~ Monterey. CA 93943-5000
J‘.-
(i
AN . . . e .
”u 1 Prof. Damel L. Davis. Code 32Y)
-':' Department of Computer Seience
¥ »
L Naval P().\Kgrddualr ~chool
> \1()[4((‘!‘(‘} SO 939435000
’_'.:'
II.:)
o 9. Center of Naval Analvsi- |
y 2000 N. Beauregard Street
iy Alexandria, VA 2231
" t Dr Raipn Wactrer |
-_'- Othce of Navar Research
::-_' Arangton. VA 222175000
-
) v Mr. Robert Westhrook 1
e CMDR. Code 331x1
o Naval Weapons Center
China Lake, CA 93355
N
o = Mr. Carl Halt]
~oftware Mis<ile Braneh
.":-. Naval Weapons Center
ity Crina Lake, €A 93555
RS
RN
RS
I
~
EE
he
yos
-
>
"
X 71
"'
I"
)) .
.
-."A.
"
»,
‘ Y R L W W AL G S NS BT W v ARG A Y S S T N S el O *,‘\'u'-.;;
B N N o It e e e e e

1ol
N
o
‘o 9 LT Anthons b Reough 1
. (lass ST
Naval Submarine Sehool
d
i Box T00. Code 20
?.: Groton. CT 06349-5700
o
:‘. 10 Mreo Joel Trimbie 1
N STARS Program Othee
Ol SDRAE
Py » . .
-, 1211 ~onth Fern Street
- Arlington. VA 2220
:.

Mr Harold Notfhe]
AEW AL A ARM
Wright Patrerson Air Force Base. OH $5432.65 17

B

L

LA W L

12 Chief of Nava, (’pl‘nﬂlnrl\ |

&,

Director of Infortation Stvtems (OP-947)
Navy Department
Woasnngron. DO 20850- 2000

b r
F

-

.

¥

VYN

h k)
PP P

55%A

.

“~ .
72
‘h

-

l.‘

- ¥

L,
v,

LI P)

+ N ™ () 3 TR R .
iy "x?"'?“- A b!'s'“h"\]';! ky ‘_ -. '.'-" \ S " , "'- N

't 0w

